Sains Malaysiana 54(2)(2025): 473-481
http://doi.org/10.17576/jsm-2025-5402-13
Rapid Detection
of Microbial Contamination on Food Contact Surfaces in Restaurants with Long
Operating Hours using Mobile Flow Cytometer
(Pengesanan Pantas Pencemaran Mikrob pada Permukaan Sentuhan Makanan di Restoran dengan Waktu Operasi Panjang menggunakan Sitometer Aliran Mudah Alih)
SHAFIZI
ABDUL WAHAB1,2 , ALIA ARYSSA MOHD HARIS1, CHAI LAY CHING3, NURUL AQILAH
MOHD ZAINI1,5, MOHAMAD YUSOF MASKAT1,5, CHOK HUI MEI4,
HUDA SABER ABU BAKAR SALEH4, MOHAMED YUSUF MOHAMED NAZIR1,5 & SAHILAH ABDUL MUTALIB1,5,*
1Department of Food Science, Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
2Ministry of Health, Kompleks E, Pusat Pentadbiran Kerajaan Persekutuan, 62590 Putrajaya, Malaysia
3Chancellery Office, Sunway University, Jalan Universiti,
47500 Bandar Sunway, Selangor, Malaysia
4Premier Diagnostics Sdn. Bhd. 40400 Shah Alam, Selangor, Malaysia
5Innovation Centre for Confectionery Technology (MANIS), Faculty of
Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
Diserahkan: 24 September 2024/Diterima:
7 November 2024
Abstract
Cross-contamination on food contact surfaces (FCS) increases the risk of
foodborne diseases incidence. Traditional microbial detection methods are
time-consuming, prompting the exploration of the rapid method; CytoQuant® mobile flow cytometer which employ perturbation
of low-frequency electric fields between intact membrane and cytoplasm. The
cross-sectional study used CytoQuant® and total plate
count (TPC) involved 30 FCS from six (n = 6) selected restaurants with long
operating hours in the Lembah Klang area. Findings showed that the CytoQuant® was able to
detect the presence of microbial contamination within 30 seconds without
pre-treatment. The results also showed that there were significant differences
(p < 0.05) between intact cell and particles readings on FCS.
Furthermore, even though there are some differences in individual sample
readings from the FCS, the mean values across various restaurants showed no
significant difference (p > 0.05) between CytoQuant and TPC, suggesting that both methods provide comparable intact cell
measurements on average. Further microbiological and premise rating analysis
showed that all six premises exhibited aerobic, coliform counts and patogen exceeding established thresholds on the cutting
board, including detection of salmonella in one of the premises, which
correlated with the poor premises rating. This study suggest that employing CytoQuant® on-site ensures rapid and
reliable results in monitoring of FCS, reducing the risk of foodborne diseases
compared to TPC analysis.
Keywords: Food contact surfaces; in-situ measurement; microbial contamination; mobile flow cytometer brand CytoQuant®; rapid detection
Abstrak
Pencemaran silang pada permukaan yang bersentuhan makanan (PBM) meningkatkan risiko kejadian penyakit bawaan makanan. Kaedah pengesanan mikrobiologi tradisi memerlukan tempoh masa, justeru, ia mendorong penerokaan penggunaan sitometri aliran mudah alih CytoQuant® yang berdasarkan perbezaan medan elektrik frekuensi rendah antara membran sel dan sitoplasma sebagai salah satu teknologi baharu untuk mengukur pencemaran mikrobiologi di lapangan. Kajian keratan rentas menggunakan sitometri aliran CytoQuant® dan TPC melibatkan 30 permukaan sentuhan makanan daripada enam (n = 6) restoran terpilih dengan waktu operasi yang panjang di kawasan Lembah Klang. Penemuan menunjukkan bahawa penggunaan sitometri aliran CytoQuant® dapat mengesan kehadiran pencemaran mikrobiologi dalam masa 30 saat tanpa rawatan awal. Hasil juga menunjukkan bahawa terdapat perbezaan yang signifikan (p <
0.05) antara bacaan sel dan zarah pada permukaan sentuhan makanan seperti papan pemotong, pisau, klip makanan, pinggan dan sudu. Selain itu, walaupun terdapat perbezaan bacaan sel apabila diukur menggunakan CytoQuant® dan TPC pada beberapa PBM, bacaan min bacaan untuk kesemua restoran menunjukkan tiada perbezaan signifikan (p >
0.05) antara bacaan sel menggunakan CytoQuant® dan analisis TPC. Analisis mikrobiologi dan penarafan premis lanjutan menunjukkan kesemua enam premis mencatatkan bilangan aerobik, koliform dan patogen melebihi ambang yang ditetapkan pada papan pemotong, termasuk pengesanan Salmonella spp. di salah satu premis yang berkorelasi dengan penarafan premis yang rendah. Oleh itu, penggunaan CytoQuant® di lapangan memastikan keputusan yang cepat dan boleh dipercayai dalam pemantauan permukaan sentuhan makanan dan mengurangkan risiko kejadian penyakit bawaan makanan berbanding dengan analisis TPC.
Kata kunci: Pencemaran mikrobiologi; pengesanan pantas; pengukuran di lapangan; permukaaan sentuhan makanan; sitometri aliran mudah alih CytoQuant®
RUJUKAN
Ahmed, Z., Afreen,
A., Hassan, M.U., Ahmad, H., Anjum, N. & Waseem, M. 2017. Exposure of food
safety knowledge and inadequate practices among food vendors at Rawalpindi; the
fourth largest city of Pakistan. Journal of Food and Nutrition Research 5(1): 63-73.
Al Banna, M.H.,
Khan, M.S.I., Rezyona, H., Seidu,
A-A., Abid, M.T., Ara, T., Kundu, S., Ahinkorah,
B.O., Hagan, J.E.J., Tareq, M.A., Begum, M.R.,
Chowdhury, M.F.T. & Schack, T. 2022. Assessment of food safety knowledge,
attitudes and practices of food service staff in Bangladeshi hospitals: A
cross-sectional study. Nutrients 14(12): 2540.
Bertelsen, C.V., Franco, J.C., Skands,
G.E., Dimaki, M. & Svendsen, W.E. 2020.
Investigating the use of impedance flow cytometry for classifying the viability
state of E. coli. Sensors 20(21): 6339.
Cosby, C.M., Costello, C.A., Morris, W.C.,
Haughton, B., Devereaux, M.J., Harte, F. & Davidson, P.M. 2008.
Microbiological analysis of food contact surfaces in child care centers. Applied and Environmental Microbiology 74(22):
6918-6922.
De Filippis, F.,
Valentino, V., Alvarez-Ordonez, A., Cotter, P.D. & Ercolini,
D. 2021. Environmental microbiome mapping as a strategy to improve quality and
safety in the food industry. Current Opinion in Food Science 38:
168-176.
Hultman, J., Rahkila,
R., Ali, J., Rousu, J. & Bjorkroth,
K.J. 2015. Meat processing plant microbiome and contamination patterns of
cold-tolerant bacteria causing food safety and spoilage risks in the manufacture
of vacuum-packaged cooked sausages. Applied and Environmental Microbiology 81(20): 7088-7097.
Ilea, C., Soptica,
F. & Widmann, S. 2022. Flow Cytometry and
Verification of Cleaning and Disinfection in Food Manufacturing Facilities, edited
by Davis, J. Austria: Romer Labs Division Holding GmbH.
Jay, J. 2002. A review of aerobic and psychrotrophic plate count procedures for fresh meat and
poultry products. Journal of Food Protection 65(7): 1200-1206.
Keeratipibul, S., Laovittayanurak,
T., Pornruangsarp, O., Chaturongkasumrit,
Y., Takahashi, H. & Techaruvichit, P. 2017.
Effect of swabbing techniques on the efficiency of bacterial recovery from food
contact surfaces. Food Control 77: 139-144.
Lani, M.N., Mohd Azmi, M.F., Ibrahim, R., Alias, R. & Hassan, Z. 2014. Microbiological
quality of food contact surfaces at selected food premises of Malaysian
heritage food (“Satar”) in Terengganu, Malaysia. The International Journal of Engineering and Science 3(9): 66-70.
Marzano, M.A. & Balzaretti,
C.M. 2011. Cook-serve method in mass catering establishments: Is it still
appropriate to ensure a high level of microbiological quality and safety? Journal
Food Control 22(12): 1844-1850.
Maturin, L. & Peeler, J.T. 2001. Chapter
3: Aerobic Plate Count. https://www.fda.gov/food/laboratory-methods-food/bam-chapter-3-aerobic-plate-count
Ministry of Housing and Local Government
(KPKT). 2014. Guidelines on Food Premises Grading System in the Local
Authority Area, Secretary General’s Circular of the Ministry of Local
Government Development, No. 2 of 2014.
Oliver, J.D. 1995. The viable but
non-culturable state in the human pathogen Vibrio vulnificus. FEMS
Microbiology Letters 133(3): 203-208.
Panaiotov, S., Hodzhev,
Y., Tsafarova, B., Tolchkov,
V. & Kalfin, R. 2021. Culturable and
non-culturable blood microbiota of healthy individuals. Microorganisms 9(7): 1464.
Sauer, K., Stoodley,
P., Goeres, D.M., Hall-Stoodley,
L., Burmolle, M., Stewart, P.S. & Bjarnsholt, T. 2022. The biofilm life cycle: Expanding the
conceptual model of biofilm formation. Nature Reviews Microbiology 20(10): 608-620.
Shafizi, A.W., Sahilah,
A.M., Chai, L.C., Razalee, S. & Aishah, E. 2024.
Microbial assessment on cutting boards and cleanliness levels of restaurants
with long operating hours around Klang Valley,
Malaysia. International Food Research Journal 31(3): 658-669.
Sneed, J., Strohbehn,
C., Gilmore, S.A. & Mendonca, A. 2004. Microbiological evaluation of
foodservice contact surfaces in Iowa assisted-living facilities. Journal of
the American Dietetic Association 104(11): 1722-1724.
Whitehead, K.A. & Verran,
J. 2006. The effect of surface topography on the retention of microorganisms. Food
and Bioproducts Processing 84(4): 253-259.
Xu, Y., Xie, X., Duan, Y., Wang, L., Cheng, Z. & Cheng, J. 2016. A review
of impedance measurements of whole cells. Biosensors and Bioelectronics 77:
824-836.
Zulfakar, S.S., Sahani,
M. & Hamid, N.H.A. 2018. Microbiological assessment of food contact
surfaces in residential college cafeterias at a local university in Malaysia. Jurnal Sains Kesihatan
Malaysia 16: 33-38.
*Pengarang untuk surat-menyurat;
email: sahilah@ukm.edu.my
|